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Abstract. We study an interacting electron gas parabolically confined to a quantum wire in a
perpendicular magnetic field. We consider the case of more than one subband occupied in the
ground state. The intersubband spin-density excitations are calculated within the Hartree–Fock
random-phase approximation. Similarly to the case in the absence of a magnetic field, vertex
corrections to the electron spin polarizability are important, leading to collective spin-density
excitations red-shifted with respect to the Hartree–Fock single-particle energies. In a finite
magnetic field, the triplet of spin-density excitations splits. The splitting is at its maximum
if the chemical potential is in between the bottom of a spin-up subband and the bottom of a
spin-down subband, when theg-factor is greatly enhanced due to the exchange interaction.

1. Introduction

Low-dimensional interacting electron systems in a magnetic field have attracted substantial
interest in recent years. Quasi-one-dimensional systems, quantum wires, can be produced
by using gate voltages to confine the electron gas starting from a semiconductor quantum
well. In these systems the electrons are free to move in only one direction and are localized
in the others. These systems display a variety of interesting physical effects, some of which
can be explored by optical measurements. The spin-density and charge-density excitations
of low-dimensional systems can be measured by means of inelastic light scattering [1]
and the charge-density excitations also contribute to the far-infrared absorption. A variety
of calculations of the intra- and intersubband charge-density excitations in quantum wires
have been performed on the basis of the Hartree random-phase approximation (H-RPA)
[2–8], and these are found to agree well with experiment [9–14]. Beyond the H-RPA, Yang
and Aers [15] have used a Hartree–Fock random-phase approximation (HF-RPA) to find
a roton minimum in the intrasubband magnetoplasmon dispersion, whose existence was
experimentally confirmed in reference [13]. In that experiment [13], intersubband spin-
flip excitations were also observed. Recently, spin excitations in coupled double layers in a
perpendicular magnetic field were also studied [16]. Tanatar has investigated the spin-density
excitation spectra in the extreme quantum limit when only one subband is occupied [17].
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For intrasubband and intersubband spin-density excitations in quantum wires, we have
recently shown [18, 19] that, for zero magnetic field, vertex corrections to the electron spin
polarizability are important. They lead to collective spin-density excitations with resonance
energies considerably red-shifted with respect to the single-particle Hartree–Fock energies.
For the charge-density excitation spectra, vertex corrections are less important. However,
in our previous works [18, 19], the effect of a finite magnetic field on the spin-density
excitations was not considered.

For a two-dimensional electron gas (2DEG) in a perpendicular magnetic field, Longo
and Kallin [20] have calculated the spin-density excitations in the HF-RPA and by using the
generalized single-mode approximation [21, 22]. They showed that the HF-RPA produces
good results for integer filling factors, but is less satisfactory for fractional fillings because
important correlations are neglected in this case. Nevertheless, the HF-RPA still serves to
give qualitative results [20], and can serve as a benchmark for theories including correlation
effects.

Many problems in accounting for electron–electron interactions in 2D systems are
associated with the macroscopic degeneracy of the Landau levels. Unlike in 2D systems,
in one-dimensional systems the Landau levels are non-degenerate. However, in one-
dimensional systems strong correlations usually take place even for weakly interacting
particles [23–28]. The system that we will study, a quantum wire with more than one
subband occupied, is in the intermediate regime between the 2DEG and the one-dimensional
cases. We expect the one-dimensional correlations to be weaker in the case of several
occupied subbands. They are also less important for intersubband excitations as well as
for intrasubband excitations whose energy is not very low. We will therefore use the HF-
RPA to calculate the different intersubband spin-density excitations of the electron gas in a
perpendicular magnetic fieldB. Within this scheme, first, the ground state is calculated to
find the Hartree–Fock single-particle states and energies. Second, the Hartree–Fock single-
particle states and energies are used to derive the excitation energies in the corresponding
time-dependent equation, where the recombination between the electrons and holes (bubble
diagrams) and the interaction between the excited electrons and holes (ladder diagrams) are
taken into account.

In order to make the description more explicit, let us consider a GaAs quantum wire
with a parabolic confinement potential of a characteristic frequencyω0. The eigenstates in
the wire are specified by the quantum numbersn for the subband,k for the longitudinal
momentum, andσ = ±1 for the spin. An intersubband electron–hole excitation is created
by promoting an electron from the initial state (n′, k, σ ′) to the final state (n, k, σ ). In
the absence of electron–electron interaction, the intersubband electron–hole pair has the
excitation energy

Ek,1σ = (n− n′)h̄�+1σ h̄ωZ/2
expressed in terms of the spin difference1σ = σ − σ ′, the effective subband separation
h̄� = h̄(ω2

0 + ω2
c )

1/2, and the Zeeman energy splitting ¯hωZ = gµBB. Here ωc is the
cyclotron frequency,g is the Land́e g-factor in GaAs, andµB is the Bohr magneton.
The non-interacting intersubband spin-density excitation energies are independent of the
longitudinal quantum numberk, and will thus give a sharp peak in the spectra at energies
equal to(n− n′)h̄�+1σ h̄ωZ/2. In the dipole limit that we will consider, only transitions
with |n− n′| = 1 are allowed.

In the Hartree approximation in the ground state, the screening of the external parabolic
potential reduces the single-particle subband separation from(n − n′)h̄� to a smallerk-
dependent subband separation1H

nn′k. There is no interaction between an electron and a hole
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with opposite spin in the excited states, so the spin-flip excitation energies are given by

EHk,1σ = 1H
nn′k +1σ h̄ωZ/2

in the Hartree random-phase approximation. In this case, the intersubband spin-density
excitation energies are lowered with respect to the non-interacting case. Furthermore, its
dependence on the longitudinal quantum numberk results in a broader peak centred around
a mean intersubband excitation energy. However, the energy difference between the three
different spin-flip excitations (1σ = 2, 1σ = 0, and1σ = −2) is completely determined
by the Zeeman terms

1EHk,+ = EHk,2− EHk,0 = h̄ωZ and 1EHk,− = EHk,−2− EHk,0 = −h̄ωZ
as for non-interacting electrons.

In the Hartree–Fock approximation of the ground state, the effective Zeeman energy
splitting, gknh̄ωZ, for the self-consistent single-particle states can be enhanced from ¯hωZ
due to the exchange interaction, which favours unequal occupation of the spins. The
enhancement of theg-factor depends on the electronic density, the magnetic field, the
subband index, and the longitudinal momentum. It has a maximum value when the chemical
potential is close to a subband energy, and a minimum value when the chemical potential is
in between two subband energies [29–32]. The screening of the external potential causing
a smaller subband separation1HF

nn′k is similar to the results of the Hartree approximation.
Excluding vertex corrections for the excited states, the spin-dependent energy is

E
HF,0
k,1σ = 1HF

nn′k + (σgkn − σ ′gkn′)h̄ωZ/2.
Within this approximation the difference in the spin-flip excitation energies

E
HF,0
k,2 − EHF,0k,−2 = (gkn + gkn′)h̄ωZ

is thus larger than its corresponding non-interacting value. For the long-wavelength charge-
density excitations, the magnetoplasmons, the excitation energies are increased with respect
to the single-particle excitation energies due to the depolarization shift (bubble diagrams).
There are no modes corresponding to the magnetoplasmon for the spin-flip excitations
(1σ = ±2), since an electron and a hole with opposite spin cannot recombine. The
vertex correction (ladder diagrams) for the excited states lowers the spin-flip excitation
energies relative to the intersubband Hartree–Fock single-particle energies, and also gives
the excitations a collective character forming a narrow excitation energy band. The spin-flip
excitation energy is typically

(EHFk,1σ )
2 = (EHF,0k,1σ )

2− (Vk1,σ )2

in the Hartree–Fock random-phase approximation, whereVk,1σ is a measure of the vertex
corrections. Thus, the difference in the spin-flip energies,1EHFk = EHFk,2 −EHFk,−2, generally
does not simply reflect the enhanced Landé factor which is a single-particle parameter, but
also accounts for collective effects.

It is the purpose of this paper to consider the spin-density excitations in a quantum wire
in a magnetic field that can be measured experimentally and to further study the relation
between the enhancement of theg-factor and the intensity and the excitation energies of
the different spin-density excitation components.

In the next section, the model Hamiltonian for the electrons in the quantum wires is
introduced and the Hartree–Fock random-phase approximation for the ground state and
excited states is described. The numerical results are discussed in section 3 and finally we
make some concluding remarks in section 4.
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2. Model

We start with a strictly two-dimensional electron gas extended in thexy-plane but restricted
in the z-direction. The motion in thez-direction is disregarded, since the electrons are
confined to the lowest subband under the low-temperature experimental conditions. A
transverse potentialV (y) is imposed on the electron system. Along the longitudinal
direction, which is parallel to thex-axis, the quantum wire has a finite lengthL, and there
is a static magnetic field,B =∇×A(r) applied in thez-direction. The electrons interact
through the Coulomb interactionV (|r − r′|) = e2/(κ|r − r′|), whereκ is the dielectric
constant of the surrounding medium. The Zeeman energy isgµBσBz/2, where the spin
is σ = ±1 andg = −0.44 is the Land́e g-factor for GaAs. We use the Landau gauge
A(r) = (−By, 0), and define the magnetic lengthlc = [h̄/(mωc)]1/2. The Hartree–Fock
calculation scheme is well known for calculating the electronic excitations [29–32, 18, 19].
For completeness in discussing our numerical results, we outline the method below.

2.1. The ground state

We assume periodic boundary conditions in the longitudinal direction, so that the single-
particle wave-functions have the form

9(x, y) = L−1/2 exp(ikx)ψnk(y)

where the longitudinal wave-vectork = (2π/L) × integer. We define the non-interacting
transverse Hamiltonian

H0(y) = − h̄
2

2m

(
d2

dy2
− k2+ 2k

l2c
y

)
+ 1

2
mω2

cy
2+ 1

2
gµBσB + V (y) (1)

and the Hartree potential

VH(y) = 2e2

κL

∑
nkσ

fnkσ

∫ ∞
−∞

dy ln |y − y ′||φnkσ (y)|2 (2)

and also the non-local Fock operator

V kσ
F (y ′, y) = −2e2

κL

∑
n′k′

fn′k′σK0(|k − k′||y − y ′|)φnkσ (y ′)φnkσ (y) (3)

whereK0(x) is the modified Bessel function. The transverse wave-functions,φnkσ , are
determined self-consistently by the equation

[H0(y)+ VH(y)]φnkσ (y)+
∫

dy ′ V kσF (y ′, y)φnkσ (y ′) = εnkσφnkσ (y). (4)

We will study the quantum wire with a parabolic potentialV (y) = mω2
0y

2/2 which
is a good description for electrostatically defined wires [33]. The Hartree–Fock equation
(4) has been solved numerically by discretizing the transverse coordinate with a high-order
numerical method and then solving the differential–integral equation. This direct numerical
method generally gives better convergence than the method that we have used previously
[18, 19, 34], where the Hartree–Fock single-particle states were expanded in the basis of the
non-interacting states. The improvement is of significance when the Hartree–Fock wave-
function differs strongly from the non-interacting solution. As usual the self-consistent
Hartree–Fock equation is solved by iteration.
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2.2. Excited states

The charge-density excitations can be measured in far-infrared absorption or in Raman
scattering when the polarizations of the incoming and scattered photons are parallel to
each other. The spin-density excitations can be measured in Raman scattering if the two
polarizations of the incoming and scattered light are perpendicular to each other [35]. The
charge-density excitations and spin-density excitations are given by the imaginary parts of
the charge–charge and the three possible spin–spin correlation functions. These correlation
functions are written as

χA(ω) = − i

h̄

∫ ∞
0

dt eωt 〈|[Â(t), Â†(0)]|〉 (5)

whereÂ can be the charge-density operatorρ̂(q, t), the spin-density operator̂σz(q, t) along
the spin-quantization axis, or the spin-flip operators,σ̂±(q) = σ̂x(q)± iσ̂y(q). Here〈| · · · |〉
denotes the thermodynamic average. Sinceρ̂†(q, t) = ρ̂(−q, t), σ̂ †z (q, t) = σ̂z(−q, t), and
σ̂
†
+(q, t) = σ̂−(−q, t) we see thatχ †ρ(q, ω) = χρ(−q,−ω), χ †σz (q, ω) = χσz(−q,−ω), and
χ †σ±(q, ω) = χσ∓(−q,−ω).

We use the Hartree–Fock basis to define the matrix element

Faσbs (q) =
∫

dr ψ∗aσ (r)ψbs(r) exp(iq · r).

In the HF-RPA [36, 37, 20, 31, 19] the correlation functions may be expressed as (A = ρ, σ )

χA(q, ω) =
∑
cds

sAK
as
cd (q, ω)F

cs
ds (−q) (6)

wheresρ = 1 andsσ = s. Kρs is an induced charge-density matrix andKσs is an induced
spin-density matrix satisfying the equation

KAs
ab (q, ω) =

fbs − fas
h̄ω − (εas − εbs)

[
sAF

as
bs (−q)∗ +

∑
cdσ

(Vcσbs;asdσ − Vbscσ ;asdσ )KAs
cd (q, ω)

]
.

(7)

We see that the structure of the eigenvalue problem for the charge-density excitations is
the same as for the spin-density excitations, with the only difference lying in the sources
Fasbs (−q), for the charge-density excitations, andsF asbs (−q), for the spin-density excitations.
In paramagnetic systems at zero magnetic field, the two eigenvalue equations decouple into
two separate eigensystems [19], and only the vertex correction enters the eigenequation
for the spin-density excitations, because the long-range part of the Coulomb interaction is
cancelled out. This is no longer the case with a finite magnetic field, when the occupations
of the two spin states are different. The spin-flip correlation function may be expressed as

χ+(q, ω) = 4
∑
cd

K+cd(q, ω)F
c↑
d↓ (−q).

The induced spin-flip density matrix satisfies

K+ab(q, ω) =
fb↓ − fa↑

h̄ω − (εa↑ − εb↓) [Fa↑b↓ (−q)∗ −
∑
cd

Vb↓c↑;a↑d↓K+cd(q, ω)]. (8)

Here there is no direct (Hartree) Coulomb interaction between the excited electrons with
opposite spins.
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3. Numerical results and discussion

We use the intrinsic material parametersg = −0.44,m = 0.067m0, andκ = 12.4 for GaAs
in our numerical calculations, wherem0 is the electron mass. The temperature is set at
T = 1.0 K. The quantum wire has a finite lengthL = 1.0 µm and the external confinement
potential strength is ¯hω0 = 5.80 meV. There areN = 250 electrons in the wire, so the one-
dimensional electron density is 2.5× 106 cm−1. We will illustrate the general behaviour of
the ground state and the spin-density excitations by showing results of the calculations for
magnetic fields ofB = 2.00 T andB = 1.75 T. All of the calculations of the spin-density
excitation spectra have been done in the dipole limit, whereq = qey andq → 0, i.e. we
study dipole intersubband excitations.

In the calculation of the ground-state properties, the discrete intervals in the transverse
coordinate have been chosen small enough that the error in the Hartree–Fock eigenenergies
is less than 0.02 meV. For the excited states, the basis of electron–hole pairs has been
made sufficiently large to give an accuracy of the excitation energies within 0.05 meV.
The longitudinal f-sum rule is fulfilled to within 2% for all calculations. We have checked
that the generalized Kohn theorem [38] is satisfied for the intersubband charge-density
excitations, i.e. that there is only a single peak in the dipole intersubband charge-density
excitation spectra at an excitation energy ¯h�.

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3

g n
k

k (105 cm-1)

n=0 n=1

n=2

Figure 1. The effectiveg-factor calculated in the Hartree–Fock approximation forB = 2.00 T
as a function of the longitudinal momentum. The confinement energy is ¯hω0 = 5.80 meV, the
length of the wireLx = 10 000Å, T = 1.0 K, m = 0.067m0, κ = 12.4, and there areN = 250
electrons in the wire.

Let us first discuss the case where the magnetic field isB = 2.00 T (lc = 181 Å). The
effective confinement energy is ¯h� = h̄(ω2

0+ω2
c )

1/2 = 6.75 meV. In this case there are two
subbands occupied both in the Hartree and the Hartree–Fock approximation. The external
potential is screened, leading to an effective subband separation that is smaller than the
effective external potential strength, ¯h�. In the Hartree approximation, where the exchange
interaction is neglected, the Hartree subband separation is 3.75 meV between subbandn = 0
and subbandn = 1, it is 3.89 meV between subbandn = 1 and subbandn = 2 and it is
4.00 meV between subbandn = 2 and subbandn = 3, all atk = 0. The resulting subband
separation in the Hartree–Fock approximation islarger than in the Hartree approximation.
For spin-up electrons it takes the values 6.00 meV, 6.56 meV, and 5.42 meV, atk = 0.
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The screening is thus significantly poorer in the HFA than in the HA due to the exchange
interaction. We also find that the subbands have a flatter character aroundk = 0 in the
Hartree–Fock approximation than in the Hartree approximation. As a result of the Zeeman
term and the exchange interaction, the occupation of the spin-up and spin-down electron
states is no longer equal for finite magnetic fields. This is especially apparent when we
consider figure 1, where we show the effectiveg-factor calculated from the Hartree–Fock
single-particle energies as a function of the momentumk and the subband index, for the
three lowest subbands. We define the effectiveg-factor as

gkn = (εHFk,n,+1− εHFk,n,−1)/(gµBB). (9)

Thus, for non-interacting electrons we would havegkn = 1. Starting at the subbandn = 2,
we see that since this subband is close to the Fermi level, there is a large enhancement of
the effectiveg-factor (by one order of magnitude) for the states close tok = 0. For larger
values ofk, subband 2 is further away from the chemical potential, the exchange splitting
of the subbands is weaker, and hence the effectiveg-factor is reduced. However, we find
that theg-factor does not decrease monotonically, but is in fact an oscillating function of
the momentumk with decreasing amplitude for increasing longitudinal momentum. The
same behaviour can be seen for theg-factor associated with the subbandn = 1, which
is out of phasewith the oscillations of theg-factor associated with subbandn = 2. The
subbandn = 0 also shows oscillations, but with a larger period ink. We believe that these
oscillations are an effect of the confinement of the wire. The subbandn = 0 has a larger
Fermi wave-vector than subbandn = 1, and this could possibly explain the period of the
oscillations of theg-factor being larger for subbandn = 1 than for subbandn = 0. The
Fermi wave-vectors for the lowest spin subband (n = 0) arekF,0,1 = 2.3× 105 cm−1 and
kF,0,−1 = 2.3× 105 cm−1, and for the next spin subband (n = 1) kF,1,1 = 1.6× 105 cm−1

andkF,1,−1 = 1.6× 105 cm−1. In comparison, the period of the oscillation ingk0 is around
2.5× 105 cm−1, and the period of the oscillation ingk1 is around 1.2× 105 cm−1. There is
no Fermi wave-vector associated with subband 2, and the period of the oscillation ingk2 is
in between the periods of the oscillations ingk0 andgk1. For this subband, the amplitudes of
the oscillations in theg-factor are so large that it creates states that have the spins inverted
[30, 31]; that is, the effectiveg-factor is negativefor some regions of longitudinal wave-
vectors. However, one should be cautious about the cases in which theg-factor changes its
sign due to the electron–electron interaction. It could be that we are in a regime where the
Hartree–Fock approximation is unstable.

Finally, for the case whereB = 2.00 T, we show, in figure 2, the spin-density excitations
calculated within the H-RPA (upper panel) and the HF-RPA (lower panel). In the plot of
the spin-density excitations we have given the excitations a phenomenological Lorentzian
broadening of 0.05 meV. As mentioned in the introduction, the spin-density excitation
spectra in the H-RPA are given by the Hartree single-particle excitations. These excitation
energies are thus lowered with respect to the effective subband separation ¯h�, due to the
screening of the external potential. Since in GaAs theg-factor is negative, the Hartree
eigenenergies satisfyεHn,k,1 < εHn,k,−1. Therefore, the excitation energies for the spin-flip
χσ− -mode are larger than the excitation energies for theχσ+ -mode as seen in the upper part
of figure 2. The spectrum is broadened due to thek-dependent Hartree subband separation.
In the lower part of figure 2, we see the spin-density excitations including the exchange
interaction (calculated in the HF-RPA). First, we observe that these peaks have a more
collective character than the spectra in the H-RPA, since the peaks are sharper. Second, the
energy of these peaks is lower than what the H-RPA predicts, even though the screening
is poorer in the Hartree–Fock approximation than in the Hartree approximation. Therefore,



4274 A Brataas et al

3 3.5 4 4.5 5

In
te

ns
ity

 (
a.

 u
.)

E (meV)

z

+ -

In
te

ns
ity

 (
a.

 u
.)

z

+ -

(b)

(a)

Figure 2. The intensity of spin-density and spin-flip excitations forB = 2.00 T as a function
of the excitation energy calculated using the H-RPA (a) and calculated using the HF-RPA (b).
The labeli = +,−, z denotes the three different spin-density modes,−Imχi . The other system
parameters are as for figure 1.

the vertex corrections are strong and important. We also see that the splitting of the three
spin-density modesz, +, and−, is larger in the HFA than in the HA, which is an effect of
the enhancement of theg-factor in the single-particle Hartree–Fock energies. The splitting
of the spin-density modes corresponds to an effectiveg-factor of 1.8. This is seen to be
reasonable when we compare with the values of theg-factor in figure 1. The splitting of
the excited modes takes an average value of theg-factor over the occupied longitudinal
momentumk.

Second, we discuss the case of a magnetic fieldB = 1.75 T (lc = 194 Å). The
resulting effective subband separation is ¯h� = 6.54 meV. In the Hartree approximation,
three subbands are occupied, with only a very small occupation of the third subband. The
energy separation between subbandn = 0 andn = 1 is 3.47 meV, it is 3.52 meV between
subbandn = 1 andn = 2, and it is 3.50 meV between subbandn = 2 andn = 3. Since
the third subband is very close to the Fermi energy, the exchange interaction has a drastic
effect in this case. We show in figure 3 the Hartree–Fock eigenenergies as a function of the
longitudinal momentumk. States with spin up (σ = 1) are denoted by+ and states with
spin down (σ = −1) are denoted by∗. We see that for spin-up electrons three subbands
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Figure 3. Hartree–Fock eigenenergies forB = 1.75 T as a function of the longitudinal
momentum. Spin-up states (σ = 1) are denoted by+ and spin-down states (σ = −1) are
denoted by∗. The other system parameters are as for figure 1.
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Figure 4. The effectiveg-factor calculated in the Hartree–Fock approximation forB = 1.75 T
as a function of the longitudinal momentum. The other system parameters are as for figure 1.

are occupied, and that only two subbands are occupied for spin-down electrons. There is
an almost two-orders-of-magnitude enhancement of theg-factor as shown in figure 4. The
enhancement is largest for the subbandn = 2 which is close to the Fermi energy. We see
also here oscillations in the enhancement of theg-factor as a function of the longitudinal
momentumk for the different subbands.

Within the H-RPA, the spin-density excitation spectra shown in the upper part of
figure 5 look qualitatively the same forB = 1.75 T as for the case already discussed
above (B = 2.00 T). We see in figure 5 broad peaks centred around the single-particle
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Figure 5. The intensity of spin-density and spin-flip excitations forB = 1.75 T as a function
of the excitation energy calculated using the H-RPA and calculated using the HF-RPA (b). The
label i = +,−, z denotes the three different spin-density modes,−Imχi . The other system
parameters are as for figure 1.

excitation energy 3.50 meV. In addition, since there is a finite difference in the occupation
of spin-up and spin-down electrons in the subbandn = 2, which is close to the chemical
potential, we see a spin-wave mode for low energies due to the intrasubband excitation
appearing in the spin-flip modeχσ− .

There is a drastic change in the spectra within the HF-RPA shown in the lower part of
figure 5 as compared to the calculated H-RPA spin-density excitation spectra. For the spin-
density modeχσz , we find one narrow peak which is significantly shifted to lower energies
with respect to the Hartree–Fock single-particle energies. For the spin-flip modeχσ+ we
also see one narrow peak due to the collective intersubband transition which is considerably
red-shifted with respect to theχσz -mode. The difference in energy between theχσz - andχσ+ -
modes corresponds to an effectiveg-factor of 42 which also here appears as a reasonable
average of the effectiveg-factor of the single-particle states shown in figure 4. Finally, for
theχσ− -mode, we see three narrow peaks. The lowest-energy peak is the spin-wave mode
associated with the energy of the intrasubband spin-flip transition in the subbandn = 2.
This is the strongest peak in the spectra. The energy of the spin-wave mode is 0.4 meV,
and is greatly reduced with respect to the single-particle Hartree–Fock energy difference
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at k = 0, ε2,0,1 − ε2,0,−1 = 3.0 meV, due to the vertex corrections. There are also two
higher-energy peaks for theχσ− -modes. We interpret these modes as arising from spin-flip
excitations from subbandn = 0 to subbandn = 1 and from spin-flip excitations from
subbandn = 1 to subbandn = 2. In the case ofB = 2.00 T these two transitions showed
up in the spectra as only a single collective peak in figure 2. In the case here (B = 1.75 T)
the Hartree–Fock single-particle energies for these two possible transitions differ so much
due to the complicated strong enhancement of theg-factor that the vertex correction is not
strong enough to produce just one collective peak, and as a result two peaks are seen.

4. Concluding remarks

In the calculation of the ground-state Hartree–Fock wave-function, we have seen how the
effectiveg-factor is enhanced when the chemical potential is aligned with a subband energy.
For the given quantum wire parameters the enhancement of theg-factor may be by almost
two orders of magnitude. It should be noted that the large enhancement of theg-factor was
also found previously in 2D systems [29–31]. We find that the effectiveg-factor oscillates
with the longitudinal momentum. Vertex corrections are important for the spin- density
excitations, since they cause collective peaks that are considerably red-shifted with respect
to the single-particle excitation energies. We have shown how the three components of the
spin-density excitations split in a magnetic field. The splitting is at its maximum when the
enhancement of theg-factor is large, as should be expected. The splitting takes an average
of the enhancement of theg-factor for the occupied states.

The Hartree–Fock approximation may give too large an enhancement of theg-factor
due to the strong exchange force that is reduced in better approximations where higher-order
correlation effects are included. The same is also true for the vertex corrections which tend
to be strong. If the external parabolic potential separation is lowered, keeping all other
parameters the same as already discussed, the spin-density excitation energy atB = 0 T
approaches zero at around ¯hω0 = 4.0 meV, and the spin-density excitations are overdamped
for smaller subband separations. This is an artifact of the HF-RPA [19].

A consequence of a finite magnetic field is that in general thez-component of the
spin-density excitations and the charge-density excitations are coupled, as can be seen
from equation (7). However, in the present calculation we have considered the dipole
intersubband excitations in a parabolic confinement. The generalized Kohn theorem then
dictates the intersubband charge-density excitation spectra. Hence a coupling of the charge-
density excitation spectra and thez-component of the spin-density excitation spectra cannot
be directly seen. For a non-parabolic confinement the generalized Kohn theorem is relaxed,
and a coupling between the charge-density excitations and thez-component of the spin-
density excitations is possible. For the charge-density excitations small anharmonic terms
in addition to a parabolic confinement lead to the appearance of Bernstein modes in the
charge-density excitation spectra around the harmonics of the cyclotron frequencyω = nωc
(n = 2, 3, . . .) [33, 34]. Since thez-component of the spin-density excitations is coupled
to the charge-density excitations, the Bernstein modes will also influence the spectra of the
z-component of the spin-density excitation spectra.

We have in our calculations assumed that the electron motion is strongly quantized in
the z-direction, thus ignoring the spatial extent of the wave-function in this direction. It
is well known that a reduced dimensionality increases the electron–electron interaction. In
an experimental situation the spatial extent of the electron density in thez-direction can
be comparable to the spatial extent of the electron density in they-direction. Therefore,
the inclusion of a finite extent of the wave-function can be important in a quantitative
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comparison with experiments as shown by Reboredo and Proetto for the charge-density
excitations in a quantum wire in zero magnetic field [7]. The effects of the finite thickness
in zero magnetic field have also been studied by Steinebachet al in a self-consistent 3D
model, showing that the thickness can be important for the exchange interaction as well [39].

In an experimental situation one would possibly measure the three different components
of the spin-density excitations over a large interval of different magnetic fields. In this case
one should see the enhanced splitting of the spin-flip modes each time a subband is being
depopulated. We have not attempted in this work to provide a plot of the excitation spectra
sampled for many different fields. The reason for this is that for a given magnetic field the
Hartree–Fock calculation has to be performed with a high degree of accuracy with many
different starting points for the eigenstates in order to find the lowest-energy Hartree–Fock
self-consistent solution.

Acknowledgments

This work was supported in part by a NorFa grant, the Icelandic Science Foundation, and
the University of Iceland Research Fund.

References

[1] Pinczuk A and Abstreiter G 1989Light Scattering in Solids V (Springer Topics in Applied Physics 66)ed
M Cardona and G G̈untherodt (Berlin: Springer)

[2] Li Q and Sarma S D 1989Phys. Rev.B 40 5860
[3] Yu H and Hermanson J C 1990Phys. Rev.B 42 1496
[4] Li Q P and Sarma S D 1991Phys. Rev.B 43 11 768
[5] Li Q P, Sarma S D and Joynt R 1992Phys. Rev.B 45 13 713
[6] Wendler L and Grigoryan V G 1994Phys. Rev.B 49 13 607
[7] Reboredo F A and Proetto C R 1994Phys. Rev.B 50 15 174
[8] Hwang E and Sarma S D 1994Phys. Rev.B 50 17 267
[9] Demel T, Heitmann D, Grambow P and Ploog K 1988Appl. Phys. Lett.53 2176

[10] Egeler T, Abstreiter G, Weinmann G, Demel T, Heitmann D, Grambow P and Schlapp W 1990Phys. Rev.
Lett. 65 1804

[11] Demel T, Heitmann D, Grambow P and Ploog K 1991Phys. Rev. Lett.66 2657
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